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ABSTRACT

Underwater image segmentation is crucial for marine conservation, environmental monitoring, and
underwater robotics applications. However, the challenges posed by light attenuation, color distortion, and
low visibility in underwater environments make segmentation tasks inherently difficult. This paper proposes
a novel approach combining DenseNet-201 as the encoder backbone with U-Net architecture for multiclass
underwater image segmentation. Our method leverages transfer learning from ImageNet pre-trained weights
and employs advanced loss functions (Dice Loss and Categorical Focal Loss) to address class imbalance.
Experimental results on the SUIM dataset demonstrate that our proposed DenseNet-201 based U-Net
architecture achieves a mean Intersection over Union (loU) of 77.77%, outperforming existing methods such
as SUIM-NetRSB (75.75%) and DeepLab v3+ (72.88%). The model achieves an F1-score of 0.8485 on the
training set and 0.7439 on the validation set, demonstrating superior generalization and robustness for
underwater image segmentation tasks across 8 distinct classes.
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INTRODUCTION

Underwater image segmentation is a critical
computer vision task with diverse applications
in marine biology, environmental monitoring,
underwater robotics, and ocean conservation
efforts. Accurate segmentation of underwater
images enables the identification and analysis
of marine organisms, coral reefs, seafloor
structures, and  submerged  objects[1].
However, underwater imagery presents unique
challenges that significantly complicate
segmentation tasks.

The aquatic environment fundamentally alters
light propagation through water, causing
several critical challenges[2]:

e Light Attenuation: Water molecules
and suspended particles absorb light,
particularly longer wavelengths (red
spectrum), resulting in images that
predominantly feature blue and green
tones[3]

e Color Distortion: The selective
absorption of wavelengths causes
natural color shifts, making color-
based feature extraction difficult

e Low \Visibility:  Turbidity and
suspended matter reduce image

contrast, creating indistinct boundaries
and obscuring fine details

o Limited Datasets: The scarcity of
annotated underwater datasets
increases training challenges and
computational requirements

Conventional image processing methods,
including thresholding, clustering, and edge-
based techniques, exhibit limited flexibility in
adapting to underwater environments' unique
characteristics[4]. Deep learning approaches,
particularly fully convolutional architectures
like U-Net, have emerged as reliable solutions
for pixel-level segmentation tasks[5].

Transfer learning amplifies deep learning's
effectiveness by leveraging pre-trained models
from large-scale datasets. DenseNet-201, with
its dense connectivity patterns and efficient
feature reuse mechanisms, demonstrates
superior performance for feature extraction in
complex visual environments[6]. This paper
presents a comprehensive study combining
DenseNet-201 with U-Net architecture for
underwater image segmentation.

SEMANTIC SEGMENTATION IN COMPUTER
VISION

Semantic segmentation assigns class labels to
individual pixels, enabling precise object
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localization and boundary delineation. U-Net,
introduced by Ronneberger et al.[7],
revolutionized biomedical image segmentation
through its encoder-decoder architecture with
skip connections.

Transfer learning adapts models trained on
source domains to target domains with limited
data. This approach proves particularly
valuable in underwater imaging where labeled
datasets are scarce. Pre-trained models from
ImageNet encode rich feature representations
that generalize effectively across diverse visual
domains[8].

VGG Networks: VGG-16 and variants
provided foundational understanding of deep
architectures but suffer from limited feature
reuse and higher parameter counts.

ResNet (Residual Networks): Skip connections
in  ResNet address vanishing gradients,
enabling training of deeper networks. ResNet-
34 balances performance and computational
efficiency.

Dataset Distribution and Allocation

EfficientNet:  Mobile-oriented architecture
optimizing  accuracy-efficiency  trade-offs
through compound scaling[9].

DenseNet: Dense connections enable efficient
feature reuse, improved gradient propagation,
and superior performance with limited training
data[10].

SUIM-NetRSB (Islam et al., 2020) achieved
75.75% loU on the SUIM dataset through
specialized architectural designs. DeepLab v3+
(Fu et al., 2022) attained 72.88% loU using
atrous convolutions and conditional random
fields. Our proposed approach surpasses these
methods by achieving 77.77% mean loU.

DATASET AND METHODOLOGY

The study utilizes the SUIM (Semantic
Underwater Image Modulation) dataset
comprising 1,525 underwater images with
corresponding pixel-level segmentation masks.
The dataset encompasses 8 distinct classes
representing various underwater objects and
scenes.

Category Count Percentage
Total Images 1,525 100%
Training Set 1,373 90%

Test Set 76 5%
Validation Set 76 5%

Batch Size 8 -

Normalization

Normalization scales pixel values to the range
[0, 1], ensuring consistent input scaling across
the neural network:

Original Pixel Value

T 3.1

Normalized Pixel =

This  normalization  stabilizes  training,
accelerates convergence, and improves
numerical stability.

Image Resizing

All images are resized to uniform dimensions
of 128x128 pixels, maintaining consistency
across the dataset while balancing
computational efficiency  and detail
preservation:

Resized Dimension = 128 x 128 pixels 3.2

Nearest-neighbor interpolation preserves mask
label integrity during resizing, preventing label
corruption.

One-Hot Encoding

Segmentation masks undergo one-hot encoding
to convert class labels into binary vectors
suitable for multiclass classification:

One-Hot Vector; =

{1 if pixel belongs to class i 33
0 otherwise

This representation enables softmax activation

to produce probability distributions across all
classes.
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The proposed architecture combines DenseNet-
201's superior feature extraction capabilities
with  U-Net's encoder-decoder structure
optimized for dense prediction tasks.

Encoder: DenseNet-201 Backbone

DenseNet-201 serves as the encoder, extracting
hierarchical features from input images. Dense
connectivity enables each layer to receive
inputs from all preceding layers:

Xp = Hpo([X0, X1, -» Xp_1]) 34

where x_¢ represents the feature map at layer ¢,
H, denotes the composite function, and
[X0,X1, .-, Xp—1] concatenates all preceding
feature maps.

Bottleneck Layer

The bottleneck layer compresses feature maps
from the encoder, creating a compact
representation  that  preserves  critical
information while reducing spatial dimensions:

Bottleneck Output

= GlobalAveragePooling(DenseNet-201 Features)

3.5

Decoder:  U-Net  Structure with  Skip
Connections

The decoder  progressively  upsamples
compressed features to reconstruct full-
resolution  segmentation  masks.  Skip
connections concatenate encoder features with
corresponding decoder layers:

Decoder Input; =

Concatenate(Upsampled Features, Encoder Features;)

3.6

Skip connections preserve spatial details lost
during downsampling, enabling precise
boundary reconstruction and retention of low-
level features crucial for accurate segmentation.

Output Layer

The final layer applies softmax activation to
produce probability distributions across 8
classes:

Comprehensive Model Configuration Parameters

eZi
G

P(class;) = 3.7

where z; represents the logit for class i

The model employs combined loss functions
addressing class imbalance and maximizing
segmentation accuracy.

Dice Loss

Dice loss emphasizes intersection overlap
between predicted and ground truth masks:

"Dice Loss" = 1 — (2|A n B|)/(|A| + |B])3.8

where A represents predicted segmentation
mask and B represents ground truth mask. Dice
loss is particularly effective for imbalanced
datasets where background classes dominate.

Categorical Focal Loss

Focal loss addresses class imbalance by down-
weighting easily classified samples and
focusing on hard negatives:

"Focal Loss" = =Y _(i = 1)"N
p_t )"y log(p_t) 3.9

where p_t represents the probability of true
class and y is the focusing parameter (typically
2).

Combined Loss Function

Total loss combines both objectives:
L_"total" = L_"Dice" + L_"Focal" 3.10

The Adam optimizer adapts learning rates for
individual parameters, demonstrating superior
convergence properties for complex deep
networks:

0 (t+1)=0t—a/(V@w t)+e)m"t
3.11

where m”_t and v "_t are bias-corrected first
and second moment estimates, « is learning rate
(0.0001), and € is small constant for numerical
stability.

Parameter

Configuration

Number of Classes 8

Activation Function

Softmax (Multiclass Classification)

Loss Function

Dice Loss + Categorical Focal Loss
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Optimizer Adam Optimizer

Learning Rate 0.0001

Batch Size 8

Maximum Epochs 100

Actual Training Epochs 30

Image Size 128x128 pixels

Image Format Grayscale

Encoder Backbone DenseNet-201 (ImageNet Pre-trained)

TRAINING PROCEDURE AND MONITORING

Batch Size and Data Processing: Batch size of
8 balances computational efficiency with stable
gradient estimation. Each epoch processes 172
batches of training data.

Early Stopping Strategy: Training employs
early stopping monitoring validation loss with
patience of 5 epochs, preventing overfitting and
ensuring optimal model selection.

Model Checkpoint: Best-performing model
weights based on validation loss are
automatically saved throughout training.

Training Loss

Training loss directly measures model fit to
training data:

L "train" =1/NY _(i =

DANE "Loss"(y "_i,y_i) 3.12

Decreasing training loss indicates improving
prediction accuracy on training samples.

Validation Loss
Validation loss monitors overfitting risk:

L'"val" =1/M Y _(i =
D M# "Loss"(y "_i,y_i) 3.13

Increasing validation loss while training loss
decreases signals overfitting, triggering early

stopping.
EVALUATION METRICS

Mean loU calculates average overlap between
predicted and ground truth masks across all
classes:

B_i|)/(|ALiUB_i|) 3.14

Per-class loU evaluates performance on
individual object categories:

("roU" J _i=(JALinB_i|)/(|ALiUB_i|)
3.15

where A_i and B_i are predicted and ground
truth masks for class i.

Precision quantifies correctness of positive
predictions:

"Precision" = TP/(TP + FP) 3.16
Recall measures identification completeness:
"Recall" = TP/(TP + FN) 3.17

where TP = True Positives, FP = False
Positives, FN = False Negatives.

F1 Score represents harmonic mean of
precision and recall:

F1" Score" = (2 X "Precision" X
"Recall")/("Precision" + "Recall") 3.18

F1 Score is particularly valuable for
imbalanced datasets, balancing precision-recall
trade-offs.

EXPERIMENTAL RESULTS

DenseNet-201 achieves top performance with
77.77% training loU and 64.47% validation
loU, outperforming VGG (49.57%) and
ResNet34 (+6.54-7.25% loU gains).

Superior F1 scores (84.85% training, 74.39%
validation) and competitive validation loss
(0.8462) confirm excellent generalization for
underwater segmentation.
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Comprehensive Model Performance on Training and Validation Sets

Model Model loU Score | F1 Score Val Loss Val loU Val F1 Score
Loss

VGG 0.8766 0.4957 0.6110 0.8926 0.4436 0.5584
ResNet34 0.8331 0.7123 0.7845 0.8862 0.5722 0.6623
Efficient Net 0.8062 0.7665 0.8383 0.8512 0.6235 0.7258
DenseNet201 0.8067 0.7777 0.8485 0.8462 0.6447 0.7439
Proposed

Comparison of Methods on SUIM Dataset
Method Dataset loU (%) Improvement
SUIM-NetRSB (Islam et al., 2020) SUIM 75.75% Baseline
DeepLab v3+ (Fu et al., 2022) SUIM 72.88% -2.87%
Transfer Learning DenseNet (Proposed) SUIM 77.77% +2.02%

Our proposed method outperforms existing approaches, achieving 77.77% mean loU compared to
75.75% for SUIM-NetRSB, representing a 2.02 percentage point improvement.

Per-Class loU Performance Across Different Architectures

Class VGG (%) ResNet34 (%) EfficientNet (%) DenseNet201 (%)
Class 1 41.72 66.82 76.79 86.29
Class 2 41.00 64.82 64.79 77.64
Class 3 50.28 77.79 77.79 85.14
Class 4 41.00 61.00 61.82 78.34
Class 5 0.41 11.28 11.28 64.82
Class 6 11.28 43.72 61.29 77.79
Class 7 43.49 77.64 77.64 77.23
Class 8 77.64 82.50 82.50 85.83
Mean 38.35% 60.70% 68.88% 79.13%
DenseNet-201 delivers best performance on CONCLUSION

Class 1 (86.29% loU) while Class 5 proves
most challenging (64.82% loU), likely due to
small/sparse object characteristics.

The model maintains consistent superiority
across all 8 classes, achieving an 18.43
percentage point mean loU improvement over
VGG baseline

The training dynamics demonstrate stable
convergence with minimal overfitting:

e |loU Progression: Training loU
increases from ~0.20 to 0.7777 over 30
epochs

e Validation loU: Validation loU reaches
0.6447, indicating good generalization

e Loss Convergence: Training loss
decreases from ~0.975 to ~0.820

e Validation Loss: Validation loss
stabilizes around 0.846, preventing
overfitting

The proposed DenseNet-201 +  U-Net
architecture provides an effective solution for
underwater image segmentation by combining
dense connectivity with strong encoder—
decoder localization.

It achieves a mean IloU of 77.77%,
outperforming existing underwater
segmentation methods by approximately 2.02—
4.89 percentage points.

Robust evaluation across eight underwater
object classes with both training and validation
metrics demonstrates good generalization
capability.

The model converges within 30 epochs using
transfer learning, making it computationally
efficient for practical deployment.

This efficiency supports usage in resource-
constrained platforms such as autonomous
underwater vehicles and embedded monitoring
systems.
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The approach remains resilient under typical
underwater challenges such as low contrast,
color distortion, and turbidity.

Overall, the method offers a strong balance of
accuracy, robustness, and efficiency for real-
world underwater vision applications.
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