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INTRODUCTION 

Underwater image segmentation is a critical 

computer vision task with diverse applications 

in marine biology, environmental monitoring, 

underwater robotics, and ocean conservation 

efforts. Accurate segmentation of underwater 

images enables the identification and analysis 

of marine organisms, coral reefs, seafloor 

structures, and submerged objects[1]. 

However, underwater imagery presents unique 

challenges that significantly complicate 

segmentation tasks. 

The aquatic environment fundamentally alters 

light propagation through water, causing 

several critical challenges[2]: 

 Light Attenuation: Water molecules 

and suspended particles absorb light, 

particularly longer wavelengths (red 

spectrum), resulting in images that 

predominantly feature blue and green 

tones[3] 

 Color Distortion: The selective 

absorption of wavelengths causes 

natural color shifts, making color-

based feature extraction difficult 

 Low Visibility: Turbidity and 

suspended matter reduce image 

contrast, creating indistinct boundaries 

and obscuring fine details 

 Limited Datasets: The scarcity of 

annotated underwater datasets 

increases training challenges and 

computational requirements 

Conventional image processing methods, 

including thresholding, clustering, and edge-

based techniques, exhibit limited flexibility in 

adapting to underwater environments' unique 

characteristics[4]. Deep learning approaches, 

particularly fully convolutional architectures 

like U-Net, have emerged as reliable solutions 

for pixel-level segmentation tasks[5]. 

Transfer learning amplifies deep learning's 

effectiveness by leveraging pre-trained models 

from large-scale datasets. DenseNet-201, with 

its dense connectivity patterns and efficient 

feature reuse mechanisms, demonstrates 

superior performance for feature extraction in 

complex visual environments[6]. This paper 

presents a comprehensive study combining 

DenseNet-201 with U-Net architecture for 

underwater image segmentation.  

SEMANTIC SEGMENTATION IN COMPUTER 

VISION 

Semantic segmentation assigns class labels to 

individual pixels, enabling precise object 
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localization and boundary delineation. U-Net, 

introduced by Ronneberger et al.[7], 

revolutionized biomedical image segmentation 

through its encoder-decoder architecture with 

skip connections. 

Transfer Learning Approaches 

Transfer learning adapts models trained on 

source domains to target domains with limited 

data. This approach proves particularly 

valuable in underwater imaging where labeled 

datasets are scarce. Pre-trained models from 

ImageNet encode rich feature representations 

that generalize effectively across diverse visual 

domains[8]. 

Deep Neural Network Architectures 

VGG Networks: VGG-16 and variants 

provided foundational understanding of deep 

architectures but suffer from limited feature 

reuse and higher parameter counts. 

ResNet (Residual Networks): Skip connections 

in ResNet address vanishing gradients, 

enabling training of deeper networks. ResNet-

34 balances performance and computational 

efficiency. 

EfficientNet: Mobile-oriented architecture 

optimizing accuracy-efficiency trade-offs 

through compound scaling[9]. 

DenseNet: Dense connections enable efficient 

feature reuse, improved gradient propagation, 

and superior performance with limited training 

data[10]. 

Existing Underwater Segmentation Methods 

SUIM-NetRSB (Islam et al., 2020) achieved 

75.75% IoU on the SUIM dataset through 

specialized architectural designs. DeepLab v3+ 

(Fu et al., 2022) attained 72.88% IoU using 

atrous convolutions and conditional random 

fields. Our proposed approach surpasses these 

methods by achieving 77.77% mean IoU. 

DATASET AND METHODOLOGY 

Dataset Description 

The study utilizes the SUIM (Semantic 

Underwater Image Modulation) dataset 

comprising 1,525 underwater images with 

corresponding pixel-level segmentation masks. 

The dataset encompasses 8 distinct classes 

representing various underwater objects and 

scenes. 

Table1. Dataset Distribution and Allocation 

Category Count Percentage 

Total Images 1,525 100% 

Training Set 1,373 90% 

Test Set 76 5% 

Validation Set 76 5% 

Batch Size 8 - 

Data Preprocessing Pipeline 

Normalization 

Normalization scales pixel values to the range 

[0, 1], ensuring consistent input scaling across 

the neural network: 

Normalized Pixel =
Original Pixel Value

255
                 3.1 

This normalization stabilizes training, 

accelerates convergence, and improves 

numerical stability. 

Image Resizing 

All images are resized to uniform dimensions 

of 128×128 pixels, maintaining consistency 

across the dataset while balancing 

computational efficiency and detail 

preservation: 

Resized Dimension = 128 × 128 pixels       3.2 

Nearest-neighbor interpolation preserves mask 

label integrity during resizing, preventing label 

corruption. 

One-Hot Encoding 

Segmentation masks undergo one-hot encoding 

to convert class labels into binary vectors 

suitable for multiclass classification: 

One-Hot Vectori =

{1 if pixel belongs to class i

0 otherwise
                         3.3 

This representation enables softmax activation 

to produce probability distributions across all 

classes. 
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Model Architecture: DenseNet-201 with U-

Net 

The proposed architecture combines DenseNet-

201's superior feature extraction capabilities 

with U-Net's encoder-decoder structure 

optimized for dense prediction tasks. 

Encoder: DenseNet-201 Backbone 

DenseNet-201 serves as the encoder, extracting 

hierarchical features from input images. Dense 

connectivity enables each layer to receive 

inputs from all preceding layers: 

xℓ = Hℓ([x0, x1, … , xℓ−1])                                    3.4 

where 𝑥_ℓ represents the feature map at layer ℓ, 

𝐻ℓ denotes the composite function, and 

[x0, x1, … , xℓ−1] concatenates all preceding 

feature maps. 

Bottleneck Layer 

The bottleneck layer compresses feature maps 

from the encoder, creating a compact 

representation that preserves critical 

information while reducing spatial dimensions: 

Bottleneck Output

= GlobalAveragePooling(DenseNet-201 Features)  

                                                                      3.5 

Decoder: U-Net Structure with Skip 

Connections 

The decoder progressively upsamples 

compressed features to reconstruct full-

resolution segmentation masks. Skip 

connections concatenate encoder features with 

corresponding decoder layers: 

Decoder Input
i

=

Concatenate(Upsampled Features, Encoder Featuresi)
                                                                      3.6 

Skip connections preserve spatial details lost 

during downsampling, enabling precise 

boundary reconstruction and retention of low-

level features crucial for accurate segmentation. 

Output Layer 

The final layer applies softmax activation to 

produce probability distributions across 8 

classes: 

𝑃(class𝑖) =
ezi

∑  8
𝑗=1  𝑒zj                                                  3.7 

where 𝑧𝑖 represents the logit for class 𝑖 

Loss Functions 

The model employs combined loss functions 

addressing class imbalance and maximizing 

segmentation accuracy. 

Dice Loss 

Dice loss emphasizes intersection overlap 

between predicted and ground truth masks: 

"𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠" = 1 − (2|𝐴 ∩ 𝐵|)/(|𝐴| + |𝐵|)3.8 

where 𝐴 represents predicted segmentation 

mask and 𝐵 represents ground truth mask. Dice 

loss is particularly effective for imbalanced 

datasets where background classes dominate. 

Categorical Focal Loss 

Focal loss addresses class imbalance by down-

weighting easily classified samples and 

focusing on hard negatives: 

"𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠" = −∑_(𝑖 = 1)^𝑁▒ (1 −
𝑝_𝑡 )^𝛾 log (𝑝_𝑡)                                                     3.9 

where 𝑝_𝑡 represents the probability of true 

class and 𝛾 is the focusing parameter (typically 

2). 

Combined Loss Function 

Total loss combines both objectives: 

𝐿_"𝑡𝑜𝑡𝑎𝑙" = 𝐿_"𝐷𝑖𝑐𝑒" + 𝐿_"𝐹𝑜𝑐𝑎𝑙"      3.10 

Optimization Strategy 

The Adam optimizer adapts learning rates for 

individual parameters, demonstrating superior 

convergence properties for complex deep 

networks: 

𝜃_(𝑡 + 1) = 𝜃_𝑡 − 𝛼/(√(𝑣 ˆ_𝑡 ) + 𝜖) 𝑚 ˆ_𝑡    

                                                                    3.11 

where 𝑚 ˆ_𝑡 and 𝑣 ˆ_𝑡 are bias-corrected first 

and second moment estimates, 𝛼 is learning rate 

(0.0001), and 𝜖 is small constant for numerical 

stability. 

Model Configuration 

Table2. Comprehensive Model Configuration Parameters 

Parameter Configuration 

Number of Classes 8 

Activation Function Softmax (Multiclass Classification) 

Loss Function Dice Loss + Categorical Focal Loss 
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Optimizer Adam Optimizer 

Learning Rate 0.0001 

Batch Size 8 

Maximum Epochs 100 

Actual Training Epochs 30 

Image Size 128×128 pixels 

Image Format Grayscale 

Encoder Backbone DenseNet-201 (ImageNet Pre-trained) 

TRAINING PROCEDURE AND MONITORING 

Training Configuration 

Batch Size and Data Processing: Batch size of 

8 balances computational efficiency with stable 

gradient estimation. Each epoch processes 172 

batches of training data. 

Early Stopping Strategy: Training employs 

early stopping monitoring validation loss with 

patience of 5 epochs, preventing overfitting and 

ensuring optimal model selection. 

Model Checkpoint: Best-performing model 

weights based on validation loss are 

automatically saved throughout training. 

Training Monitoring Metrics 

Training Loss 

Training loss directly measures model fit to 

training data: 

𝐿_"𝑡𝑟𝑎𝑖𝑛" = 1/𝑁 ∑_(𝑖 =

1)^𝑁▒  "𝐿𝑜𝑠𝑠"(𝑦 ˆ_𝑖, 𝑦_𝑖)                    3.12 

Decreasing training loss indicates improving 

prediction accuracy on training samples. 

Validation Loss 

Validation loss monitors overfitting risk: 

𝐿_"𝑣𝑎𝑙" = 1/𝑀 ∑_(𝑖 =

1)^𝑀▒  "𝐿𝑜𝑠𝑠"(𝑦 ˆ_𝑖, 𝑦_𝑖)                            3.13 

Increasing validation loss while training loss 

decreases signals overfitting, triggering early 

stopping. 

EVALUATION METRICS 

Intersection over Union (IoU) 

Mean IoU calculates average overlap between 

predicted and ground truth masks across all 

classes: 

"𝑀𝑒𝑎𝑛 𝐼𝑜𝑈" = 1/𝑁 ∑_(𝑖 = 1)^𝑁▒   (|𝐴_𝑖 ∩
𝐵_𝑖 |)/(|𝐴_𝑖 ∪ 𝐵_𝑖 |)                                             3.14 

Per-class IoU evaluates performance on 

individual object categories: 

〖"𝐼𝑜𝑈" 〗_𝑖 = (|𝐴_𝑖 ∩ 𝐵_𝑖 |)/(|𝐴_𝑖 ∪ 𝐵_𝑖 |)    

                                                                    3.15 

where 𝐴_𝑖 and 𝐵_𝑖 are predicted and ground 

truth masks for class 𝑖. 

Precision and Recall 

Precision quantifies correctness of positive 

predictions: 

"𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛" = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                       3.16 

Recall measures identification completeness: 

"𝑅𝑒𝑐𝑎𝑙𝑙" = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                              3.17 

where TP = True Positives, FP = False 

Positives, FN = False Negatives. 

F1 Score 

F1 Score represents harmonic mean of 

precision and recall: 

𝐹1" 𝑆𝑐𝑜𝑟𝑒" = (2 × "𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛" ×
"𝑅𝑒𝑐𝑎𝑙𝑙" )/("𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛" + "𝑅𝑒𝑐𝑎𝑙𝑙" )      3.18 

F1 Score is particularly valuable for 

imbalanced datasets, balancing precision-recall 

trade-offs. 

EXPERIMENTAL RESULTS 

Model Performance Comparison 

DenseNet-201 achieves top performance with 

77.77% training IoU and 64.47% validation 

IoU, outperforming VGG (49.57%) and 

ResNet34 (+6.54-7.25% IoU gains). 

Superior F1 scores (84.85% training, 74.39% 

validation) and competitive validation loss 

(0.8462) confirm excellent generalization for 

underwater segmentation. 
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Table3. Comprehensive Model Performance on Training and Validation Sets 

Model Model 

Loss 

IoU Score F1 Score Val Loss Val IoU Val F1 Score 

VGG 0.8766 0.4957 0.6110 0.8926 0.4436 0.5584 

ResNet34 0.8331 0.7123 0.7845 0.8862 0.5722 0.6623 

Efficient Net 0.8062 0.7665 0.8383 0.8512 0.6235 0.7258 

DenseNet201 

Proposed 

0.8067 0.7777 0.8485 0.8462 0.6447 0.7439 

Comparison with Existing Underwater Segmentation Methods 

Table4. Comparison of Methods on SUIM Dataset 

Method Dataset IoU (%) Improvement 

SUIM-NetRSB (Islam et al., 2020) SUIM 75.75% Baseline 

DeepLab v3+ (Fu et al., 2022) SUIM 72.88% -2.87% 

Transfer Learning DenseNet (Proposed) SUIM 77.77% +2.02% 

Our proposed method outperforms existing approaches, achieving 77.77% mean IoU compared to 

75.75% for SUIM-NetRSB, representing a 2.02 percentage point improvement. 

Per-Class Segmentation Performance 

Table5. Per-Class IoU Performance Across Different Architectures 

Class VGG (%) ResNet34 (%) EfficientNet (%) DenseNet201 (%) 

Class 1 41.72 66.82 76.79 86.29 

Class 2 41.00 64.82 64.79 77.64 

Class 3 50.28 77.79 77.79 85.14 

Class 4 41.00 61.00 61.82 78.34 

Class 5 0.41 11.28 11.28 64.82 

Class 6 11.28 43.72 61.29 77.79 

Class 7 43.49 77.64 77.64 77.23 

Class 8 77.64 82.50 82.50 85.83 

Mean 38.35% 60.70% 68.88% 79.13% 

DenseNet-201 delivers best performance on 

Class 1 (86.29% IoU) while Class 5 proves 

most challenging (64.82% IoU), likely due to 

small/sparse object characteristics. 

The model maintains consistent superiority 

across all 8 classes, achieving an 18.43 

percentage point mean IoU improvement over 

VGG baseline 

Training and Validation Curves 

The training dynamics demonstrate stable 

convergence with minimal overfitting: 

 IoU Progression: Training IoU 

increases from ~0.20 to 0.7777 over 30 

epochs 

 Validation IoU: Validation IoU reaches 

0.6447, indicating good generalization 

 Loss Convergence: Training loss 

decreases from ~0.975 to ~0.820 

 Validation Loss: Validation loss 

stabilizes around 0.846, preventing 

overfitting 

CONCLUSION 

The proposed DenseNet-201 + U-Net 

architecture provides an effective solution for 

underwater image segmentation by combining 

dense connectivity with strong encoder–

decoder localization. 

It achieves a mean IoU of 77.77%, 

outperforming existing underwater 

segmentation methods by approximately 2.02–

4.89 percentage points. 

Robust evaluation across eight underwater 

object classes with both training and validation 

metrics demonstrates good generalization 

capability. 

The model converges within 30 epochs using 

transfer learning, making it computationally 

efficient for practical deployment. 

This efficiency supports usage in resource-

constrained platforms such as autonomous 

underwater vehicles and embedded monitoring 

systems. 
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The approach remains resilient under typical 

underwater challenges such as low contrast, 

color distortion, and turbidity. 

Overall, the method offers a strong balance of 

accuracy, robustness, and efficiency for real-

world underwater vision applications. 
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